

E-mail: oiss@jnu.edu.cn **Tel**: 86-020-85220399

JINAN UNIVERSITY General Chemistry I

Lecturer: TBA

Time: Monday through Friday(June 17, 2019-July 19, 2019) **Office hours:** 2 hours (according to the teaching schedule)

Contact Hours: 50 (50mins each)

Credits: 3

Location: MBA Center **Office:** MBA Center 107

E-mail:TBA

Course Description

General Chemistry I is designed as an introduction to the most fundamental laws, theories, and principles of general chemistry. It is appropriate for students that have not had an advanced chemistry course in high school, and for those majoring in the environmental, earth, and social sciences, as well as disciplines such as architecture, business, and the humanities. The goal of this course is to provide students with a firm foundation on the basic concepts and principles of chemistry.

The course content is divided into 10 modules:

- Module I (*Keys to the Study of Chemistry*) discusses central ideas about matter and energy; about the process of science, as it relates to the origins of chemistry; about units of measurement for mass, length, volume, density, and temperature; about applications of chemical problem-solving to unit conversions; and about uncertainty in measurements and the distinction between accuracy and precision.
- Module II (*The Components of Matter*) examines the properties and composition of matter on the microscopic and atomic scales, including: the differences between

elements, compounds, and mixtures, and between atoms, ions, isotopes, and molecules; the evolution of the atomic theory and the nuclear atom model; we explore the atomic arrangement in the periodic table; we introduce chemical bonding in the formation of ionic compounds and covalent substances; we derive names and formulas of compounds and calculate their masses on the atomic scale.

- Module III (Stoichiometry of Formulas and Equations) relate the mass of a substance to the number of chemical entities comprising it (atoms, ions, molecules, or formula units) and apply this relationship to formulas and equations. We start by defining the mole, and using it to convert between mass and number of entities, and to derive a chemical formula from mass analysis. We explore how formulas relate to molecular structures, and learn how to write and balance chemical equations. We calculate the amounts of reactants and products in a reaction, and determine limiting reactants and reaction yields.
- Module IV (*Major Classes of Chemical Reactions*) examines the underlying nature of three classes of reactions, and the complex part that water plays in aqueous chemistry. We start by exploring the molecular structure of water and its role as a solvent, then discuss molarity as a way to express the concentration of an ionic or covalent compound in a solution. We write equations for aqueous ionic reactions, describe precipitation reactions and their stoichiometry, explore acid-base reactions as proton-transfer processes, examine oxidation-reduction reactions in the formation of ionic and covalent substances, and explore the nature of equilibrium.
- Module V (*Gases and the Kinetic-Molecular Theory*) explores the physical behavior of gases and the theory that explains this behavior. We begin by comparing the behavior of solids, liquids, and gases, the discuss methods for measuring gas pressure. We consider laws that describe the behavior of a gas and its volume changes, and rearrange the ideal gas law to determine the density and molar mass of an unknown gas, the partial pressure of a gas in a mixture, and the amounts of reactants and products in a chemical change. We relate gas laws to the kinetic-molecular theory, and apply key ideas about gas behavior to Earth's atmosphere.
- Module VI (*Thermochemistry*) investigates how heat, or thermal energy, flows when matter changes, how to measure the quantity of heat for a given change, and how to determine the direction and magnitude of heat flow for any reaction. We begin by exploring energy transformation and flow between systems, then we discuss the units of energy and identify the heat of a reaction as a change in enthalpy. We describe how a calorimeter measures heat and how the quantity of heat in a reaction is proportional to the amounts of substances. We define standard conditions in order to compare enthalpies of reactions and see how to obtain the

change in enthalpy for any reaction, and discuss some current and future energy sources.

- Module VII (Quantum Theory and Atomic Structure) discusses quantum mechanics, the theory that explains the fundamental nature of energy and matter and accounts for atomic structure. We begin by considering the classical distinction between the wave properties of energy and the particle properties of matter, then examine some observations that led to a quantized, or particulate, model of light. We see that light emitted by excited atoms suggests an atom with distinct energy levels, and we apply spectra to chemical analysis. We investigate how wave-particle duality and the uncertainty principle led to the current model of the H atom.
- Module VIII (*Electron Configuration and Chemical Periodicity*) explores recurring patterns of electron distributions in atoms to see how they account for the recurring behavior of the elements. We begin by describing a new quantum number and a restriction on the number of electrons in an orbital. We then explore electrostatic effects that lead to splitting of atomic energy levels into sublevels, and recognize how this filling order correlates with the order of elements in the periodic table. We then examine the reasons for periodic trends in three atomic properties, and see how these trends account for chemical reactivity with regard to metallic and redox behavior, oxide acidity, ion formation, and magnetic behavior.
- Module IX (*Models of Chemical Bonding*) examines how atomic properties give rise to three models of chemical bonding (ionic, covalent, and metallic) and how each model explains the behavior of substances. We see how metals and nonmetals combine via three types of bonding and learn how to depict atoms and ions with Lewis symbols. We look at how a bond forms and discuss the relations among bond order, energy, and length. We explore the relationship between bond energy and the enthalpy change of a reaction, with a focus on fuels and foods. We examine periodic trends in electronegativity and learn its role in the range of bonding, and we consider a simple bonding model that explains the properties of metals.
- Module X (*The Shapes of Molecules*) explores the three-dimensional shapes of molecules and examines some effects of these molecular shapes on physical and biochemical behavior. We learn how to apply the octet rule to convert a molecular formula into a flat structural formula that shows atom attachments and electron-pair locations. We see how electron delocalization limits our ability to depict a molecule with a single structural formula and requires us to apply the concept of resonance. We introduce bond angle and apply a theory that converts two-dimensional formulas into three-dimensional shapes. We describe five basic classes of shapes that many molecules adopt and consider how multiple bonds and

lone pairs affect them and how to combine smaller molecular portions into the shapes of more complex molecules. We discuss the relation among bond polarity, shape, and molecular polarity and the effect of polarity on behavior.

Required Textbook

*Chemistry, The Molecular Nature of Matter and Change, 7*th edition , by Martin S. Silberberg. Publisher: McGraw-Hill, ISBN 9780073511177.

Course Hours

The course has 20 sessions in total. Each class session is 120 minutes in length. The course meets from Monday to Thursday.

Assessment

Your final grade is based on the following components:

Quizzes/Homework	40%
Midterm Exam	30%
Final Exam	30%
Total	100%

Grading Scale

The instructor will use the grading system as applied by JNU:

Definition	Letter Grade	Score
Excellent	A	90-100
Good	В	80-89
Satisfactory	С	70-79
Poor	D	60-69
Failed	E	Below 60

Quizzes/Homework

Multiple self-assessment quizzes and homework assignments will be offered for students to practice their concept understanding and to prepare for the lectures. These quizzes and homework assignments will be POSTED ON BLACKBOARD on a weekly basis. Many of these assignments will be discussed during class and/or recitation. Late homework will NOT be accepted, except in the case of a documented medical reason (documentation is required).

Attendance Policy

Attendance at lectures, recitations, and labs is expected. Continued absences will detract from your final grade. If you have missed/will be missing a class or recitation session for an acceptable reason, such as illness or religious observance, please let me know in person with a written document. Ideally, you should let me know of your absence prior to missing the class. In addition, missing a class for an acceptable reason will not excuse you from completing the class exercises and the out-of class assignments so, if you miss a class, it is your responsibility to obtain notes from a classmate and contact the instructor in order to complete all the assignments by their original or extended deadlines.

Class Schedule

Week 1

Lecture 1 - Keys to the Study of Chemistry (Chapter 1)

Lecture 2 - Components of Matter: Atoms, Molecules, Ions, and Compounds (Chapter 2)

Lecture 3 - Molar Mass and Chemical Formulas (Chapter 3)

Lecture 4 - Stoichiometry of Formulas and Equations (Chapter 3)

Week 2

Lecture 5 – Ionic, Precipitation, and Acid-Base Reactions (Chapter 4)

Lecture 6 - Redox Reactions and the Equilibrium State (Chapter 4)

Lecture 7 - Gas Pressure and Gas Laws (Chapter 5)

Lecture 8 - The Kinetic-Molecular Theory (Chapter 5)

Week 3

Lecture 9 – Thermochemistry, Energy Conversion, and Enthalpy Changes (Chapter 6)

Lecture 10 – Calorimetry, Thermochemical Equations and Hess's Law (Chapter 6)

Lecture 11 – Review Session for Mid-Term Exam (Chapters 1-6)

Mid-Term Exam: Chapters 1-6

Week 4

Lecture 12 – Quantum Theory: The Nature of Light and Atomic Spectra (Chapter 7)

Lecture 13 – The Quantum-Mechanical Model of the Atom (Chapter 7)

Lecture 14 – Electron Configuration and Chemical Periodicity (Chapter 8)

Lecture 15 – Atomic Properties and Chemical Reactivity (Chapter 8)

Week 5

Lecture 16 – Models of Chemical Bonding (Chapter 9)

Lecture 17 – Bond Energy, Electronegativity, and Bond Polarity (Chapter 9)

Lecture 18 – The Shapes of Molecules: Lewis Structures and VSEPR Theory

(Chapter 10)

FINAL EXAM

Academic Honesty

Jinan University defines academic misconduct as any act by a student that misrepresents the students' own academic work or that compromises the academic work of another. Academic misconduct includes (but is not limited to) cheating on assignments or examinations; plagiarizing, i.e. misrepresenting as one's own work any work done by another; submitting the same paper, or substantially similar papers, to meet the requirements of more than one course without the approval and consent of the instructors; sabotaging another's work. Instructors will ultimately determine what constitutes academic misconduct in the courses they teach. Students found guilty of academic misconduct in any portion of the academic work face penalties ranging from a lower grade in the assignment to a final grade of E for the entire course.